男裝中的所有晶元叫什麼
⑴ 什麼是晶元
晶元是半導體元件產品的統稱,又稱微電路、微晶元、集成電路。是指內含集成電路的矽片,體積很小,常常是計算機或其他電子設備的一部分。
半導體是一類材料的總稱,集成電路是用半導體材料製成的電路的大型集合,晶元是由不同種類型的集成電路或者單一類型集成電路形成的產品。
(1)男裝中的所有晶元叫什麼擴展閱讀:
半導體材料的起源及早期發展:
英國科學家法拉第在電磁學方面擁有許多貢獻,但較不為人所知的是他在1833年發現的一種半導體材料硫化銀,它的電阻隨著溫度上升而降低。
對於一般材料來說,隨著溫度的提升,晶格震動越厲害,使得電阻增加;但對半導體而言,溫度上升使自由載子的濃度增加,反而有助於導電。這是半導體現象的首次發現。
20世紀20年代,固體物理、量子力學、能帶論等理論的不斷完善,使半導體材料中的電子態和電子輸運過程的研究更加深入,對半導體材料中的結構性能、雜質和缺陷行為有了更深刻的認識,提高半導體晶體材料的完整性和純度的研究。
20世紀50年代,為了改善晶體管特性,提高其穩定性,半導體材料的制備技術得到了迅速發展。硅材料在微電子技術應用方面應用廣泛,但在硅基發光器件的研究方面進展緩慢。
⑵ 主板上的晶元主要有哪些都有什麼作用
主板上主要有哪些晶元
1、 北橋晶元 MCH 在CPU插座的左方是一個內存控制晶元,也叫北橋晶元、一般上面有一鋁質的散熱片。北橋晶元的主要功能是數據傳輸與信號控制。它一方面通過前端匯流排與CPU交換信號,另一方面又要與內存、AGP、南橋交換信號。北橋晶元壞了以後的現象多為不亮,有時亮後也不斷死機。如果工程師判定你的北橋晶元壞了,再如果你的主板又比較老的話,基本上就沒有什麼維修的價值了
2、 南橋晶元 ICH4 南橋晶元主要負責外部設備的數據處理與傳輸。比ICH4早的有ICH1、ICH2、ICH3,但它不支持USB2.0 。而ICH4支持USB2.0 。區分它們也很簡單:南橋晶元上有82801AB 82801BB 82801CB 82801DB 分別對應ICH1 ICH2 ICH3 ICH4 。南橋晶元壞後的現象也多為不亮,某些外圍設備不能用,比如IDE口、FDD口等不能用,也可能是南橋壞了。因為南北橋晶元比較貴,焊接又比較特殊,取下它們需要專門的BGA儀,所以一般的維修點無法修復南北橋。
3、 BIOS晶元 FWH 它是把一些直接的硬體信息固化在一個只讀存儲器內。是軟體和硬體之間這重要介面。系統啟動時首先從它這里調用一些硬體信息,它的性能直接影響著系統軟體與硬體的兼容性。例如一些早期的主板不支持大於二十G的硬碟等問題,都可以通過升級BIOS來解決。我們日常便用時遇到的一些與新設備不兼容的問題也可以通過升級來解決。如果你的主板突然不亮了,而CPU風扇仍在轉動,那麼你首先應該考慮BIOS晶元是否損壞。
4、 系統時鍾發生器 CLK 在主板的中間位置有個晶振元件,它會產生一系列高頻脈沖波,這些原始的脈沖波再輸入到時鍾發生器晶元內,經過整形與分頻,然後分配給計算機需要的各種頻率。 5、 超級輸入輸出介面晶元 I/O 它一般位於主板的左下方或左上方,主要晶元有Winbond 與ITE,它負責把鍵盤、滑鼠、串口進來的串列數據轉化為並行數據。同時也對並口與軟碟機口的數據進行處理。在我們的維修現場,諸如鍵盤與滑鼠口壞,列印口壞等一些外設不能用,多為I/O晶元壞,有時甚至造成不亮的現象。
6、 音效卡晶元 因為現在的主板多數都集成了音效卡,而且集成的多為AC』97音效卡晶元。當然,也有CMI的8738音效卡晶元等。如果你的集成音效卡沒有聲音,這兒壞了的可能性最大
⑶ 晶元都有什麼封裝形式,其英文簡稱是什麼
集成電路晶元的封裝形式
自從美國Intel公司1971年設計製造出4位微處a理器晶元以來,在20多年時間內,CPU從Intel4004、80286、80386、80486發展到Pentium和PentiumⅡ,數位從4位、8位、16位、32位發展到64位;主頻從幾兆到今天的400MHz以上,接近GHz;CPU晶元里集成的晶體管數由2000個躍升到500萬個以上;半導體製造技術的規模由SSI、MSI、LSI、VLSI達到 ULSI。封裝的輸入/輸出(I/O)引腳從幾十根,逐漸增加到幾百根,下世紀初可能達2千根。這一切真是一個翻天覆地的變化。
對於CPU,讀者已經很熟悉了,286、386、486、Pentium、Pentium Ⅱ、Celeron、K6、K6-2 ……相信您可以如數家珍似地列出一長串。但談到CPU和其他大規模集成電路的封裝,知道的人未必很多。所謂封裝是指安裝半導體集成電路晶元用的外殼,它不僅起著安放、固定、密封、保護晶元和增強電熱性能的作用,而且還是溝通晶元內部世界與外部電路的橋梁——晶元上的接點用導線連接到封裝外殼的引腳上,這些引腳又通過印製板上的導線與其他器件建立連接。因此,封裝對CPU和其他LSI集成電路都起著重要的作用。新一代CPU的出現常常伴隨著新的封裝形式的使用。
晶元的封裝技術已經歷了好幾代的變遷,從DIP、QFP、PGA、BGA到CSP再到MCM,技術指標一代比一代先進,包括晶元面積與封裝面積之比越來越接近於1,適用頻率越來越高,耐溫性能越來越好,引腳數增多,引腳間距減小,重量減小,可靠性提高,使用更加方便等等。
下面將對具體的封裝形式作詳細說明。
一、DIP封裝
70年代流行的是雙列直插封裝,簡稱DIP(Dual In-line Package)。DIP封裝結構具有以下特點:
1.適合PCB的穿孔安裝;
2.比TO型封裝(圖1)易於對PCB布線;
3.操作方便。
DIP封裝結構形式有:多層陶瓷雙列直插式DIP,單層陶瓷雙列直插式DIP,引線框架式DIP(含玻璃陶瓷封接式,塑料包封結構式,陶瓷低熔玻璃封裝式),如圖2所示。
衡量一個晶元封裝技術先進與否的重要指標是晶元面積與封裝面積之比,這個比值越接近1越好。以採用40根I/O引腳塑料包封雙列直插式封裝(PDIP)的CPU為例,其晶元面積/封裝面積=3×3/15.24×50=1:86,離1相差很遠。不難看出,這種封裝尺寸遠比晶元大,說明封裝效率很低,佔去了很多有效安裝面積。
Intel公司這期間的CPU如8086、80286都採用PDIP封裝。
二、晶元載體封裝
80年代出現了晶元載體封裝,其中有陶瓷無引線晶元載體LCCC(Leadless Ceramic Chip Carrier)、塑料有引線晶元載體PLCC(Plastic Leaded Chip Carrier)、小尺寸封裝SOP(Small Outline Package)、塑料四邊引出扁平封裝PQFP(Plastic Quad Flat Package),封裝結構形式如圖3、圖4和圖5所示。
以0.5mm焊區中心距,208根I/O引腳的QFP封裝的CPU為例,外形尺寸28×28mm,晶元尺寸10×10mm,則晶元面積/封裝面積=10×10/28×28=1:7.8,由此可見QFP比DIP的封裝尺寸大大減小。QFP的特點是:
1.適合用SMT表面安裝技術在PCB上安裝布線;
2.封裝外形尺寸小,寄生參數減小,適合高頻應用;
3.操作方便;
4.可靠性高。
在這期間,Intel公司的CPU,如Intel 80386就採用塑料四邊引出扁平封裝PQFP。
三、BGA封裝
90年代隨著集成技術的進步、設備的改進和深亞微米技術的使用,LSI、VLSI、ULSI相繼出現,硅單晶元集成度不斷提高,對集成電路封裝要求更加嚴格,I/O引腳數急劇增加,功耗也隨之增大。為滿足發展的需要,在原有封裝品種基礎上,又增添了新的品種——球柵陣列封裝,簡稱BGA(Ball Grid Array Package)。如圖6所示。
BGA一出現便成為CPU、南北橋等VLSI晶元的高密度、高性能、多功能及高I/O引腳封裝的最佳選擇。其特點有:
1.I/O引腳數雖然增多,但引腳間距遠大於QFP,從而提高了組裝成品率;
2.雖然它的功耗增加,但BGA能用可控塌陷晶元法焊接,簡稱C4焊接,從而可以改善它的電熱性能:
3.厚度比QFP減少1/2以上,重量減輕3/4以上;
4.寄生參數減小,信號傳輸延遲小,使用頻率大大提高;
5.組裝可用共面焊接,可靠性高;
6.BGA封裝仍與QFP、PGA一樣,佔用基板面積過大;
Intel公司對這種集成度很高(單晶元里達300萬只以上晶體管),功耗很大的CPU晶元,如Pentium、Pentium Pro、Pentium Ⅱ採用陶瓷針柵陣列封裝CPGA和陶瓷球柵陣列封裝CBGA,並在外殼上安裝微型排風扇散熱,從而達到電路的穩定可靠工作。
四、面向未來的新的封裝技術
BGA封裝比QFP先進,更比PGA好,但它的晶元面積/封裝面積的比值仍很低。
Tessera公司在BGA基礎上做了改進,研製出另一種稱為μBGA的封裝技術,按0.5mm焊區中心距,晶元面積/封裝面積的比為1:4,比BGA前進了一大步。
1994年9月日本三菱電氣研究出一種晶元面積/封裝面積=1:1.1的封裝結構,其封裝外形尺寸只比裸晶元大一點點。也就是說,單個IC晶元有多大,封裝尺寸就有多大,從而誕生了一種新的封裝形式,命名為晶元尺寸封裝,簡稱CSP(Chip Size Package或Chip Scale Package)。CSP封裝具有以下特點:
1.滿足了LSI晶元引出腳不斷增加的需要;
2.解決了IC裸晶元不能進行交流參數測試和老化篩選的問題;
3.封裝面積縮小到BGA的1/4至1/10,延遲時間縮小到極短。
曾有人想,當單晶元一時還達不到多種晶元的集成度時,能否將高集成度、高性能、高可靠的CSP晶元(用LSI或IC)和專用集成電路晶元(ASIC)在高密度多層互聯基板上用表面安裝技術(SMT)組裝成為多種多樣電子組件、子系統或系統。由這種想法產生出多晶元組件MCM(Multi Chip Model)。它將對現代化的計算機、自動化、通訊業等領域產生重大影響。MCM的特點有:
1.封裝延遲時間縮小,易於實現組件高速化;
2.縮小整機/組件封裝尺寸和重量,一般體積減小1/4,重量減輕1/3;
3.可靠性大大提高。
隨著LSI設計技術和工藝的進步及深亞微米技術和微細化縮小晶元尺寸等技術的使用,人們產生了將多個LSI晶元組裝在一個精密多層布線的外殼內形成MCM產品的想法。進一步又產生另一種想法:把多種晶元的電路集成在一個大圓片上,從而又導致了封裝由單個小晶元級轉向硅圓片級(wafer level)封裝的變革,由此引出系統級晶元SOC(System On Chip)和電腦級晶元PCOC(PC On Chip)。
隨著CPU和其他ULSI電路的進步,集成電路的封裝形式也將有相應的發展,而封裝形式的進步又將反過來促成晶元技術向前發展。
晶元封裝形式
封裝形式:
封裝形式是指安裝半導體集成電路晶元用的外殼。它不僅起著安裝、固定、密封、保護晶元及增強電熱性能等方面的作用,而且還通過晶元上的接點用導線連接到封裝外殼的引腳上,這些引腳又通過印刷電路板上的導線與其他器件相連接。衡量一個晶元封裝技術先進與否的重要指標是晶元面積與封裝面積之比,這個比值越接近1越好。
封裝大致經過了如下發展進程:
結構方面:TO->DIP->LCC->QFP->BGA ->CSP;
材料方面:金屬、陶瓷->陶瓷、塑料->塑料;
引腳形狀:長引線直插->短引線或無引線貼裝->球狀凸點;
裝配方式:通孔插裝->表面組裝->直接安裝。
DIP--Double In-line Package--雙列直插式封裝。插裝型封裝之一,引腳從封裝兩側引出,封裝材料有塑料和陶瓷兩種。DIP是最普及的插裝型封裝,應用范圍包括標准邏輯IC,存貯器LSI,微機電路等。
PLCC--Plastic Leaded Chip Carrier--PLCC封裝方式,外形呈正方形,32腳封裝,四周都有管腳,外形尺寸比DIP封裝小得多。PLCC封裝適合用SMT表面安裝技術在PCB上安裝布線,具有外形尺寸小、可靠性高的優點。
PQFP--Plastic Quad Flat Package--PQFP封裝的晶元引腳之間距離很小,管腳很細,一般大規模或超大規模集成電路採用這種封裝形式,其引腳數一般都在100以上。
SOP--Small Outline Package--1968~1969年菲為浦公司就開發出小外形封裝(SOP)。以後逐漸派生出SOJ(J型引腳小外形封裝)、TSOP(薄小外形封裝)、VSOP(甚小外形封裝)、SSOP(縮小型SOP)、TSSOP(薄的縮小型SOP)及SOT(小外形晶體管)、SOIC(小外形集成電路)等。
http://www.sunplusmcu.com/bbs/Dispbbs.asp?boardid=2&ID=601
⑷ 晶元分為工業級,商業級,軍品級,請問是按什麼劃分的
按溫度適應能力及可靠性分為四類:商業級(0~70攝氏度)、工業級(-40~85攝氏度)、汽車級(-40~120攝氏度)軍工級(-55~150攝氏度)一般區分都是按晶元型號的後綴字母來區分不過根據不同的廠家後綴字母也不一樣。
這幾年,在中興和華為事件的推動下,關於「晶元」的話題數不勝數,但凡美國動作一次,晶元話題的熱度就提高一分,天天有人聊著晶元、晶元技術,喊著要發展晶元,然而你真的了解晶元是什麼嗎? 晶元的英文名就是microchip,又被稱為微電路、微晶元、集成電路,它其實是半導體元件產品的統稱。晶元的分類有很多,按照不同的處理信號可分為模擬晶元和數字晶元兩種。簡單來說,模擬晶元利用的是晶體管的放大作用,而數字模擬晶元利用的是晶體的開關作用。具體來看,模擬晶元用來產生、放大和處理各種模擬信號,種類細且繁多,包括模數轉換晶元(ADC)、放大器晶元、電源管理晶元、PLL等等。模擬晶元設計的難點在於非理想效應過多,需要扎實的基礎知識和豐富的經驗,比如小信號分析、時域頻域分析等等。
相比之下,數字晶元則是用來產生、放大和處理各種數字信號,數字晶元一般進行邏輯運算,CPU、內存晶元和DSP晶元都屬於數字晶元。數字晶元設計難點在於晶元規模大,工藝要求復雜,因此通常需要多團隊共同協同開發。
還有大家非常常見的,按照使用功能來分類,主要有CPU、GPU、FPGA、DSP、ASIC等。CPU是中央處理器,它作為計算機系統的運算和控制核心,是信息處理、程序運行的最終執行單元。CPU 是對計算機的所有硬體資源(如存儲器、輸入輸出單元) 進行控制調配、執行通用運算的核心硬體單元。
o4YBAF_3zRCAL0FsAADjycJoyPM941.jpg
GPU即圖形處理器,又稱顯示核心、視覺處理器、顯示晶元,是一種專門在個人電腦、工作站、游戲機和一些移動設備(如平板電腦、智能手機等)上做圖像和圖形相關運算工作的微處理器。 FPGA是在PAL、GAL等可編程器件的基礎上進一步發展的產物。它是作為專用集成電路(ASIC)領域中的一種半定製電路而出現的,既解決了定製電路的不足,又克服了原有可編程器件門電路數有限的缺點。FPGA可以無限次編程,延時性比較低,同時擁有流水線並行和數據並行(GPU只有數據並行)、實時性最強、靈活性最高。 DSP也就是能夠實現數字信號處理技術的晶元,DSP晶元的內部採用程序和數據分開的哈佛結構,具有專門的硬體乘法器,廣泛採用流水線操作,提供特殊的DSP指令,可以用來快速的實現各種數字信號處理演算法。 ASIC也就是人們常說的專用集成電路,它應特定用戶要求和特定電子系統的需要而設計、製造。 目前用CPLD(復雜可編程邏輯器件)和FPGA(現場可編程邏輯陣列)來進行ASIC設計是最為流行的方式之一。
與通用集成電路相比,ASIC體積更小、重量更輕、 功耗更低、可靠性更高、性能更高、保密性更強, 成本也進一步降低。如今晶元的製造工藝也成為人們重點關注的對象,製程越先進代表著晶元的性能水平越高。因此晶元也可以按照製造工藝來分,這種分類也很常見,平時經常聽到5nm晶元,7nm晶元,14nm晶元等等,都是按照這個工藝來分的。現在的工藝技術已經能達到5nm,下一步就是3nm。通常來說製程工藝越先進,晶元晶體管集成度越高,核心面積越小,成本越低,而性能會更強,不過這個說法是針對單一晶元而言的,如果放到全局來考慮就不一樣了。按照不同應用場景來分類,晶元又可以分為民用級(消費級),工業級,汽車級,軍工級晶元,它們主要區別還是在工作溫范圍。
軍工級晶元由於要面臨復雜的戰爭環境,其使用的電子器件要足夠的耐操,像導彈、衛星、坦克、航母裡面的電子元器件,任何一個部分拿出來都是最先進的,領先工業級10年,領先商業級20年左右,最貴最精密度的都在軍工級中體現出來,其工作溫度在-55℃~+150℃;汽車級晶元工作溫度范圍-40℃~+125℃;工業級晶元比汽車級檔次稍微低一點,價格次之,精密度次之,工作溫度范圍在-40℃~+85℃;民用/消費級晶元就是市場上交易的那種,電腦、手機,你能看到的基本上都是商用的。不過產品質量也有所不同,比如微軟做的晶元就算是商業級里的軍工級,價格最便宜,最常見最實用,工作溫度范圍在0℃~+70℃。
⑸ 晶元的各種型號有什麼區別(有什麼作用)
這個就好比穿衣服。一個人一個尺寸。你叫一個3尺腰的人,穿2尺的褲子。肯定不行。每個機器型號不一樣,晶元可能有通用的,也可能不通用。晶元一般有計數和識別的功能。像惠普1025的晶元吧。這個晶元就是計數功能。當你列印到一定頁數,硒鼓裡的粉還剩一些,但是機器會提示你碳粉不足,那你就該換晶元了。再像愛普生T50連供機器的晶元,這個晶元是永久晶元,不做計數用,是用來讓機器識別墨盒的。但是還有的激光列印機例如4623,這個機器有的時候不認硒鼓,可是你把晶元拆下來,就可能認硒鼓了,也可能你換個晶元就認了。所以晶元是不能亂用的。要先搞清楚是什麼問題、
⑹ 這些商標都是哪些晶元公司分別叫什麼名稱
埃特梅爾、阿維克斯、飛兆(仙童)、模擬器件、意法半導體、美國國家半導體、安森美、
德州儀器、國際整流、美信、東芝、安森美、
瑞薩、微芯、雷創、萊地夫、威士、